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Recent advances in linear scaling algorithms that circumvect the computational bottlenecks of large-scale
electronic structure simulations make it possible to carry out density functional calculations with Gaussian
orbitals on molecules containing more than 1000 atoms and 15 000 basis functions using current workstations
and personal computers. This paper discusses the recent theoretical developments that have led to these advances
and demonstrates in a series of benchmark calculations the present capabilities of state-of-the-art computational
quantum chemistry programs for the prediction of molecular structure and properties.

Introduction

The fundamental goal of quantum chemistry is to solve the
time-independent Schro¨dinger equation for a molecular system
within the Born-Oppenheimer (fixed-nuclei) approximation.
This is a differential equation for the eigenfunctions of the
molecular Hamiltonian in 3Ne dimensions, whereNe is the
number of electrons. The reasons for solving this equation
should be obvious: equilibrium geometries, potential energy
surfaces, activation barriers, heats of reaction, excitation ener-
gies, infrared and Raman spectra, electric properties such as
dipole moments and polarizabilities, and magnetic properties
such as chemical shifts, to name just a few, can all be calculated
from first principles.

Since their introduction almost 50 years ago,1 Gaussian
orbitals have played a central role in the development of modern
computational quantum chemistry. Even though Gaussian orbit-
als do not satisfy certain basic properties of the electronic wave
functions, such as the electron-nuclear cusp and the exponential
tail, they possess a fundamental advantage over other types of
one-electron functions: if one expands the electronic wave
functions as linear combinations of antisymmetrized Slater
determinants built from molecular orbitals (MO) which in turn
are constructed as linear combinations of Gaussian atomic
orbitals (AO) and applies the variational principle, then all
integrals that appear in the procedure can be solved analytically.

If the determinant expansion is chosen such that all excitations
from occupied into unoccupied orbitals are included within a
given atomic Gaussian basis (which in practice must be trun-
cated to a finite size), the method yields exact eigenfunctions
of the molecular Hamiltonian. Thus, ground and excited states
of all symmetries can be so obtained with similar effort. Such
a method is known as full configuration interaction (CI) or
complete CI when done in terms of a complete set of molecular
orbitals. The resulting expressions can be evaluated numerically
using computers, and much effort has been devoted by quantum
chemists to derive and implement very efficient algorithms for
this purpose.

Thus, using Gaussian orbitals one can in principle calculate
the eigenfunctions (andall of the properties mentioned above)

of any molecular system. Unfortunately, the scaling of this
computation with molecular size is roughly exponential, thus
limiting the full CI approach to rather small molecules and basis
sets, even with the most powerful computers. Evidently,
approximations that preserve the basic physics in the system
but alleviate the computational scaling are needed if one desires
to carry out accurate calculations on realistic molecules.

The history of quantum chemistry is very much related to
the quest for the best possible representation of the molecular
wave function that will preserve conceptual simplicity and afford
efficient computation. Many methods have been developed over
the years to tackle the molecular electronic structure problem,
but their review is outside the scope of this article. One should
point out, however, that computational scaling has not been an
important concern in this development, at least not until recently.

Some of the most popular quantum chemistry methods that
include the effects of electron correlation, such as the second-
order Moller-Plesset perturbation theory (MP2) and coupled
cluster theory including all single, double, and perturbative triple
excitations, CCSD(T), haveO(N5) and O(N7) computational
scaling, respectively, when formulated in terms of molecular
orbitals. Here,N is a measure of molecular size, typically the
number of basis functions in the calculation. Methods such as
single-reference CCSD(T) became widely popular on the basis
of their accuracy and speed2 compared to alternative descriptions
based on multireference formulations. Computational scaling
is not an issue for small molecules because of the usually low
prefactor that the steep scaling steps have. However, these steps
take over and become fundamental bottlenecks for large enough
N, severely limiting the applicability of accurate coupled cluster
methods to large molecules.

Independent particle models such as Hartree-Fock (HF) or
Kohn-Sham density functional theory (DFT)3-5 are built upon
a single Slater determinant wave function, and, even though
they involve a self-consistent field (SCF), they have much better
computational scaling betweenO(N2) andO(N3) depending on
the size regime (i.e., depending on the actual value ofN). There
seems to have been much confusion about the scaling of HF
and DFT in the literature where quotes ofO(N4) and O(N3),
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respectively, are still occassionally seen. Only for atoms or very
small molecules are these scalings observed; scaling in large
molecules is a different problem. As discussed below, HF and
DFT methods based on Gaussian orbitals have effective scalings
in most practical cases that are much better than quartic and
cubic, respectively, and as shown in this article, can be brought
down to the linear regime for large molecules.

Although the standard approach in “mainstream” correlation
methods, such as MP2 and CCSD(T) mentioned above, has been
to use a formulation based on canonical molecular orbitals
(which are delocalized), much progress has recently been
achieved in representations that are based on atomic (localized)
orbitals,6,7 especially for MP2 where asymptotic linear scaling
has already been reported.8 Note, however, the importance of
the word “asymptotic” here; for small molecules, the canonical
formulations remain more efficient.

Based solely on scaling considerations, independent particle
models are the best candidates for calculations on large
molecules. Of the two methods mentioned above, HF contains
exact exchange but no correlation. On the other hand, DFT
approximates both exchange and correlation.

DFT in the Kohn-Sham version3 is an electron density theory
where all quantum effects are assimilated into an exchange
correlation functional whose existence can be proven9 but whose
exact form nobody knows. Over the years, physical and
empirical approaches have been used to construct functionals.
One could argue whether some of the resulting functionals are
ab initio (i.e., first-principles) or not. The fundamental difference
between mainstream wave function methods and DFT is that
in the former one has a series of approximations that leads to
the right answer (albeit with exponentially growing computa-
tional cost), whereas in DFT such a series of ever-improving
approximations remains unknown. This is perhaps the price that
one has to pay for taking the DFT “shortcut” to the many-body
problem.

It is also worth mentioning that DFT is not restricted to
ground state energies. Much progress has recently been ac-
complished in linear response time-dependent density functional
theory for excited states within the adiabatic approximation.10-12

Excitation energies and oscillator strengths can be obtained
within this model accurately and efficiently, even for systems
as large as C70.13 Unlike wave function methods, however,
excited states via DFT also suffer from the lack of systematic
improvement to the functional approximation mentioned for the
ground state above.

On the other hand, it is now firmly established in the literature
that DFT is much more accurate than HF. Furthermore, there
is plenty of evidence that DFT is more accurate than MP2,
although perhaps not systematically. Rotational barriers, disper-
sion forces, and activation barriers are examples of properties
where MP2 usually gives better predictions than do the best
current functionals.

“Mainstream” wave function methods are built upon the HF
determinant and include the exchange interaction exactly but
have to work very hard to recover the correlation energy. Current
state-of-the-art functionals in DFT offer perhaps a more balanced
although approximate treatment of exchange and correlation that
yields surprisingly accurate results.

In summary, DFT provides an effective and efficient approach
for the accurate calculation of molecular properties, structure,
and spectra. In other words, DFT has a great performance/price
ratio. The appearance of functionals remains unabated,14-18,19,20

and there is hope that even better ones will be developed in the

near future to correct deficiencies of state-of-the-art functionals
and avoid their occassional failure.

For calculations of biomolecules and other nanostructures to
become routine, linear scaling of computational time with
molecular size is required. Even quadratic scaling would not
suffice. So, the challenge is to find new methods and algorithms
that better reflect the physics of the molecular systems under
study, yieldingO(N) scaling. One should also take into account
the prefactor of linear scaling, which essentially determines the
slope of the straight line and consequently the crossover between
traditional andO(N) approaches. There is no point in attaining
linear scaling for extremely large molecules that are outside
the realm of current computational capabilities. In other words,
we are interested in achieving linear scaling of computational
time as a function of molecular size with a small prefactor such
that crossover with standard approaches occurs at modest sizes,
typically 10 to 20 atoms. Furthermore, strictly linear scaling is
not a must either; for all practical purposes, near-linear scaling
is all that we need.

Linear Scaling DFT

We next discuss the steps required to carry out a traditional
Gaussian-based DFT calculations and analyze their computa-
tional cost. First, one forms the molecular Hamiltonian, then
solves for the MO coefficients, from which the density matrix
can be straightforwardly evaluated. Both the Coulomb and
exchange-correlation potentials depend on the electron density,
so the whole procedure needs to be solved self-consistently.

The Hamiltonian is constructed in the atomic orbital basis
and contains contributions from the kinetic energy, Coulomb
and exchange-correlation potentials. The kinetic energy contri-
bution to the Hamiltonian is a one-electron term which is very
simple to handle. The number of nonvanishing kinetic energy
integrals between AOs is in principleO(N2). In practice,
however, the Gaussian product theorem eliminates most of them
quickly, yieldingO(N) surviving terms in large molecules. This
is simply because the product of two Gaussian orbitals (on the
same electron) is another Gaussian function whose prefactor
decays exponentially with the distance between orbital centers.
Thus, most Gaussian products between distant centers yield zero
integrals in the one-electron case. For the typical values of
Gaussian exponents that one uses in quantum chemistry
calculations. AOs that are separated by more than 10-20 Bohrs
yield negligible contributions. In the electron-nuclei Coulomb
term the integrand itself containsO(N) nonvanishing terms
yielding anO(N2) contribution which may be handled together
with the two-electron Coulomb repulsion term (see below).

In general, there are three important bottlenecks for achieving
linear scaling in Gaussian-based DFT calculations. These are
the electronic Coulomb problem, the exchange-correlation
quadrature, and the Hamiltonian diagonalization. These three
bottlenecks are discussed separately below.

A. The Coulomb Problem and Fast Multipole Methods.
The molecular Coulomb potential has three different compo-
nents: electron-electron, electron-nuclei, and nuclei-nuclei.
The last is just the nuclear repulsion energy. As mentioned
above, the electron-nuclei term is asymptoticallyO(N2). The
electron-electron Coulomb problem is also asymptotically
O(N2) but it has a much larger prefactor than the electron-
nuclei term (i.e., two-electron Coulomb integrals are compu-
tationally much more expensive than the one-electron integrals).

In the large molecule limit, the number of charge distributions
(products of Gaussian orbitals) grows linearly with molecular
size because of the Gaussian product theorem. All pairwise

Feature Article J. Phys. Chem. A, Vol. 103, No. 25, 19994783



interactions between these charge distributions have to be
included in the electron-electron Coulomb potential evaluation
because of the slowly decaying nature of 1/r. This yields
asymptotically anO(N2) algorithm. For rapidly decaying
potentials, as for example 1/r6, one can efficiently screen
individual interactions below a certain threshold and calculate
the energy or potential to high accuracy inO(N) operations.8

Unfortunately, this is not true for 1/r, unlessr is huge. In small
systems, the number of charge distributions grows asO(N2)
which leads toO(N4) scaling for the so called two-electron
integrals because all products of orbitals on the same electron
are non-negligible and we deal with two electrons. However,
as shown in the literature,21,22 the O(N2) regime is achieved at
fairly modest molecular sizes (tens of atoms). So for most
practical purposes, the traditional Coulomb problem isO(N2)
rather thanO(N4).

Another important issue regarding the scaling of the Coulomb
problem relates to the use of auxiliary basis sets for expanding
the electron density.23,24This approach, also known as “resolu-
tion of the identity,”25-29 reduces the four-center two-electron
integrals to a maximum of three centers, so unless the auxiliary
basis is huge, it is much faster than doing all of the Gaussian
four-center integrals, especially for small molecules. In terms
of Coulomb integrals, however, both methods yield asymptotic
O(N2) scaling. Density expansion and resolution of the identity
techniques require a matrix inversion which in principle scales
asO(N3), so for very large systems the traditional approach of
calculating four-center integrals may turn out to be more
efficient.

In Hartree-Fock theory, all four-center two-electron integrals
are required explicitly for evaluating the exchange interaction
which is included exactly. Thus, density expansions are not
useful either in HF calculations or for hybrid DFT functionals
that contain a portion of HF exchange. In the case of “pure”
DFT functionals (i.e., those that do not contain HF exchange),
DFT exchange can be calculated by quadrature rather than
explicit evaluation of all two-electron integrals which isO(N4)
for small molecules. In this case, theO(N3) scaling of density
expansions used to be championed as a functional advantage
of DFT over HF. However, this overlooks the fact that two-
electron integrals can bemathematicallyscreened using exact
bounds21,30and that onlyO(N2) of them survives.22 In summary,
the use of auxiliary basis sets for density expansion yields a
substantially faster algorithm for small molecules, but the
traditional approach has better scaling for large molecules. In
any case, the development ofO(N) methods for the Coulomb
problem, as discussed below, has made this scaling argument
obsolete.

In our work, linear scaling for the electronic Coulomb
problem is achieved by means of the fast multipole method
(FMM)31 developed for electronic structure calculations in our
research group32 and others.33 Alternative formulations have also
been proposed34,35 as well as fast algorithms for the formation
of the Coulomb matrix.36,37The FMM partitions all interactions
between a near-field (NF) and a far-field (FF) portion of the
Coulomb problem. In order to achieve high accuracy, NF
interactions are done by analytic integration of Gaussians. The
FF, which is composed of the vast majority of interactions in a
large molecule, is done in a tree algorithm via multipole
expansions. The molecule is divided in a hierarchy of boxes
and multipole moments and potentials are calculated at these
boxes and translated through the tree structure. In order to use
FMM algorithms in electronic structure calculations, one needs
to assign a finite range to the Gaussian charge distributions.

Here again, the use of Gaussian orbitals is crucial because the
mathematical bounds used in the Gaussian range definition
which assigns a spatial extent to each charge distribution
depends on the existence of analytic solutions for the Coulomb
integrals between orbitals.32,33 Our particular formulation of
FMM for electronic structure calculations was named “Gaussian
very Fast Multipole Method” (GvFMM).32 In essence, if two
charge distributions overlap (within the bounds imposed by their
assigned spatial ranges which in turn depend on the desired
accuracy), their interaction is done in the NF by analytic
integration. The number of these interactions grows linearly with
molecular size. In compact three-dimensional systems, the
asymptotic linear regime occurs at much larger molecular sizes
than, for example, in one-dimensional chains. On the other hand,
nonoverlapping distributions (of which there areO(N2)) are
treated in the FF by multipoles in a tree algorithm that yields
O(N) scaling.32

The accuracy of the FMM (i.e., the error in the Coulomb
energy or Coulomb contribution to the Hamiltonian obtained
by FMM in comparison to the exact analytic solution) can be
adjusted to machine double-precision and depends on three
parameters: a tolerance factortoler (typically between 10-6 to
10-10 depending on the desired accuracy),lmax, the size of the
multipole expansions representing the charge distributions in
the far-field evaluation (typically between 12 to 20 depending
on desired accuracy, too), andboxlen, the size of the FMM box
at the finest mesh level which is related to the number of tiers
in the tree algorithm. These parameters essentially determine
the error associated with treating Coulomb integrals between
Gaussian charge distributions by multipole expansions. This
error is negligible for very well separated charge distributions
(i.e., those whose edges are separated by a number of boxes)
and can be controlled in FMM for all other cases.

Linear scaling of computational time with molecular size has
been demonstrated in the literature for FMM in a series of
benchmark cases.32 Furthermore, FMM has also been imple-
mented in connection with first and second energy derivatives
to eliminate the evaluation of Coulomb integral derivatives in
the far-field.38,39Crossover of FMM with state-of-the-art Gauss-
ian integration occurs at very modest molecular sizes, typically
between 10 to 20 atoms, depending on the basis set, desired
accuracy, and particular characteristics of the system under
consideration, especially its dimensionality. In summary, FMM
is a powerful tool for circumvecting the explicit evaluation of
two-electron integrals. The accuracy can be easily adjusted, it
scales linearly with molecular size, and has a small prefactor
which yields early crossover with traditional integral evaluation.
Thus, the “integral bottleneck” that characterized quantum
chemistry calculations for many years has clearly been defeated.

B. Fast Linear Scaling Quadratures for Exchange and
Correlation. Because of its complicated dependence on the
electron density and its derivatives, the matrix elements of the
DFT exchange correlation (XC) potential and energy cannot
be obtained by analytic integration even when using Gaussian
orbitals. Thus, one resorts to numerical quadrature for calculating
them. Furthermore, in order to achieve high accuracy, especially
required for precise analytic differentiation of the energy with
respect to nuclear displacements (analytic forces and frequen-
cies), sophisticated multicenter quadrature schemes which
include large numbers of grid points are used in Gaussian DFT.
The integrals are partitioned over atomic centers using a weight
scheme,40,41and a further decomposition into radial and angular
components of each atomic contribution is introduced.42-44

In essence, every atomic region contributes to XC integrals
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at any given grid point, and the value of the weight depends on
all pairs of atoms. This yieldsO(N3) scaling for the weight
evaluation. Other steps in the quadrature also yieldO(N3) scaling
simply because the number of atomic-based grid points grows
linearly with molecular size and their contributions need to be
evaluated over every pair of basis functions. Although the
feasibility of achieving linear scaling for the XC quadrature has
been recognized,45,46many of the existing numerical integration
routines take advantage only of the fast-decaying nature of
Gaussian basis functions yielding scalings ofO(N2).

Exploiting the localized nature of the XC potential (which
decays much more rapidly than 1/r), one can confine its
contributions at a given grid point to a relatively small region
around it with negligible loss of accuracy. We have developed
an atomic weight scheme (SS weights)47 whose numerical
evaluation is much less costly than other popular schemes widely
used.40 By design, the occurrence of the weight value 1 or 0 is
much more frequent in our scheme than in other methods. This
is achieved by constructing a smooth polynomial connection
between 0 and 1 over anarrow spatial range. The fundamental
advantage of our weight scheme is that by determining in
advance whether a weight value will have the numerical value
of 1 or 0, which occurs every time a grid point is very close or
far from a particular atom, respectively, we avoid the actual
numerical weight computation which involves several floating
point operations.47 In other schemes, there are a large number
of weights whose values turn out to be for all practical purposes
equivalent to 1 or 0, but whose precise numerical value is
nevertheless evaluated.

We have also introduced the concept of “microbatches” of
grid points which share a common set or relevant (local) basis
functions. The combination of SS weights with microbatching
yields an accurate quadrature scheme withO(N) scaling behavior
at small molecular sizes.47 In this paper, we will occassionally
refer to this quadrature scheme as LinXC. The performance of
LinXC has been documented in the literature both for energy47

and energy second derivative calculations.48 In this paper,
additional benchmarks on even larger systems are presented.

C. Avoiding Diagonalization. The Hamiltonian diagonal-
ization is intrinsicallyO(N3), and there are no easy or simple
ways to reduce this scaling. It should be pointed out, however,
that diagonalization has such a small prefactor that its compu-
tational cost is very low up to around 2000-3000 basis
functions. Of course the use of fast quadratures and of FMM
for the Coulomb problem pushes the point where diagonalization
becomes time-dominant to smaller molecular sizes. For mol-
ecules containing around 2000 to 3000 basis functions, we have
documented in the literature32,47,48speed-up factors between one
and two orders of magnitude (depending on molecular size) for
the linear scaling Coulomb and quadrature steps compared to
previous algorithms. These advances point toward diagonaliza-
tion as becoming the major obstacle for density functional
calculations on very large molecules.

An additional complication in the diagonalization step is its
O(N2) memory requirements. Standard diagonalization routines
normally require a full copy of the matrix to be diagonalized in
core memory. Depending on machine architecture and resources,
and the particular molecular system under consideration, one
can easily get memory-bound before getting CPU-bound.

The best solution to the diagonalization bottleneck is to avoid
it and replace it with some alternative. Several methods have
been proposed in the literature for this purpose. The reader is
refered to an excellent recent review by Goedecker49 for details
on alternatives to diagonalization. We have developed and

implemented several of these methods and benchmarked them
with semiempirical Hamiltonians.50-53 In our experience, con-
jugate-gradient density matrix search (CGDMS) is one of the
best alternatives to diagonalization53 in semiempirical calcula-
tions. The corresponding work for DFT is still under progress,
and it is not completely clear yet which particular alternative
(or combination of methods) may be most efficient in Gaussian-
based DFT calculations. Because the DFT Hamiltonian and
density matrices are normally much less sparse than the
semiempirical ones, conclusions obtained for semiempirical
methods may not be directly extrapolated to the DFT case.

The results presented in this paper are obtained using our
particular formulation of the CGDMS method.50,51,54This is an
approach based on ideas by Li-Nunes-Vanderbilt (LNV)55 and
generalized by us to non-orthogonal bases.54 CGDMS is
essentially a conjugate gradient density matrix search algorithm
that minimizes an energy expression which depends on the
density matrix subject toNe representability conditions. Three
or four conjugate gradient iterations are usually enough to obtain
the density matrix to good accuracy at any given cycle of the
SCF procedure. Only the constraint on the number of electrons
is explicitly imposed through a Lagrange multiplier (chemical
potential). The idempotency constraint (i.e., the fact that
occupation numbers are strictly 0 or 1 in independent particle
models) is imposed indirectly as an energy penalty through
McWeeny’s purification transformation.56 Of course, conven-
tional quantum chemistry methods that go beyond the inde-
pendent particle approximation (i.e., self-consistent field) do not
solely depend on the one-particle density matrix. In other words,
CGDMS is a practical alternative to the diagonalization step
in SCF but does not provide an alternative to, for example, the
Hamiltonian diagonalization involved in configuration interac-
tion.

The philosophy behind CGDMS is to exploit the fact that
the one-particle density matrix is the fundamental variable in
independent particle models like HF or DFT. Eigenvectors of
the effective Hamiltonian which are obtained through the
diagonalization step are in practice only needed to construct
the density matrix. However, this is not the only way of
obtaining the density matrix, and one can instead adopt direct
search methods like CGDMS. If desired, orbitals can always
be obtained from the density matrix using techniques like
Lanczos that yieldO(N) scaling as long as one is interested in
a fixed (independent of molecular size) number of orbitals.
Unfortunately, the number of orbitals required to obtain the
density matrix itself is proportional to molecular size (i.e., the
number of electrons), so Lanczos and similar techniques have
O(N3) scaling as an alternative to diagonalization.54

The key to linear scaling performance in all alternatives to
diagonalization resides in exploiting sparse matrix multiplication
techniques. Multiplication of dense matrices is anO(N3)
procedure. In CGDMS, one essentially replaces diagonalization
by an algorithm that involves matrix multiplication. Matrix
multiplication of sparse matrices is anO(N) procedure, so
sparsity of the effective Hamiltonian and density matrices is a
fundamental ingredient for achieving linear scaling. The intrinsic
nature of the molecular system under consideration and mo-
lecular size are important factors in determining sparsity. In this
regard, the size of the HOMO-LUMO gap is connected to
“localization” and, consequently, sparsity in the system. It is
well known that systems showing metallic character (i.e., small
HOMO-LUMO gap) yield denser Hamiltonians and density
matrices than insulators (large HOMO-LUMO gaps).54,57 In
practical implementations of CGDMS, one sets a neglect
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threshold below which matrix elements are not stored, so
sparsity is also a function of the desired accuracy.

The original LNV method55 was formulated for orthogonal
bases like those used in tight-binding and semiempirical
calculations.50,51For non-orthogonal bases we have proposed54

a transformation of the non-orthogonal problem to an orthogonal
basis using the Cholesky decomposition of the overlap matrix.
Because the overlap matrix between Gaussian AOs becomes
sparser with larger molecular size, the Cholesky decomposition
can be done inO(N) operations. The inverse Cholesky
decomposition which is also required in our method has more
demanding scaling requirements. It has such a small prefactor,
however, that its scaling is not a problem unless one deals with
huge size systems. We have also analyzed alternatives based
on symmetric orthonormalization which involves the square root
and inverse square root of the overlap matrix and concluded
that Cholesky is a much better alternative.54

We next discuss the concept of “progressive convergence”
which is employed in the benchmarks presented in this paper
and is introduced in this work for the first time.

Progressive Convergence

DFT calculations need to be carried out in a self-consistent
fashion because the density matrix, which is the fundamental
quantity determining the energy, also determines the Coulomb
and XC potentials. The changes in the density matrix during
the SCF procedure are more important during the early SCF
iterations when relaxing the guess density matrix (obtained by
an AM1 semiempirical calculation in our case) which is usually
much more sparse than the DFT converged matrix. What this
means in practice is that during the initial stages of the SCF
procedure there is no point in accurately calculating the density
matrix by CGDMS. The density matrix will change significantly
during the SCF procedure because of the relaxation of the
potential. Furthermore, even the Coulomb and XC potentials
themselves do not need to be accurately determined during the
initial stages because of their dependence on the density matrix.

In practical calculations, one has a target accuracy for the
total energy and density matrix. This target accuracy pretty much
determines thefinal values of neglect thresholds and parameters
to be used in the calculation. The specific values of these
thresholds and parameters determine the accuracy of CGDMS,
FMM, and LinXC (they will be discussed in more detail below).

The fundamental idea in progressive convergence (PC) is that
during the initial stages of the SCF procedure one can use looser
values for thresholds and parameters without affecting the final
answer as long as these thresholds and parameters get tightened
up as convergence progresses and eventually reach the final
values that yield the desired accuracy. Because theO(N)
methods used in large-scale calculations scale steeply with
neglect thresholds and accuracy parameters, the savings resulting
from using looser values at the early stages of the SCF procedure
are very important. The computational savings of using PC for
CGDMS are actually much larger than those resulting from
FMM or LinXC and are quantified below. One can argue that
convergence may be hurt (i.e., more SCF cycles needed to
converge) when using PC. However, our practical experience
so far is that the overhead in terms of number of SCF cycles is
minimal, if any at all.

Our PC scheme works in practice by dynamically setting
thresholds and parameters on the basis of the root mean square
deviation between the density matrices of two consecutive SCF
cycles. This quantity will be denoted RMSDP in the following.
The CGDMS neglect threshold is simply determined by a

multiplicative factor, typically around 0.1 to 0.001, applied to
RMSDP. Very agressive CGDMS neglect thresholds usually
lead to loss of idempotency and nonconvergence, so a mini-
mum starting CGDMS threshold of 10-3, as used in this work,
is normally advised.

As mentioned above, the FMM procedure involves intrinsic
parameters that determine accuracy (lmax, boxlen,and toler)
and other thresholds normally used in Gaussian codes to neglect
charge distributions which are far apart. The latter also affects
the accuracy of the NF integrals. The accuracy in the quadrature
is also affected by other thresholds, and more importantly, by
the size of the numerical grid used in the calculation and its
pruning. Under normal circumstances the values of all these
parameters, thresholds, and grids are determined by the desired
target accuracy and the specific application; for example,
whether the user is interested in an energy calculation or a force
calculation. In PC, the target accuracy determines thefinal
values of all thresholds, parameters, and grids, but their specific
values are allowed to change from looser to tighter, and are
dynamically adjusted as convergence proceeds.

In this paper, we demonstrate the current capabilities of our
recently developed programs in a series of benchmark DFT
calculations presented in the next section. Even though these
calculations represent the state-of-the-art at the current time,
there is no doubt in our minds that continuing developments in
linear scaling methods will render these benchmarks obsolete
in the not too distant future.

Benchmark Calculations

For the purpose of benchmarking the linear scaling capabili-
ties of our methods and algorithms, we have designed a series
of water clusters in two and three dimensions. The molecules
are built from a basic cubic box of roughly 3.5 Å side that
contains eight water molecules in its interior. This cubic box is
then replicated in two and three dimensions using anm × m
andn × n × n scheme. The largestm andn used in this work
are 12 and 5, respectively. This yields a maximum of 1152 water
molecules in a two-dimensional (2D) 12× 12 cluster and 1000
water molecules in a more compact three-dimensional (3D) 5
× 5 × 5 structure.

The specific DFT functionals used in this work are the local
density approximation (LSDA),4,5 the Becke-88 exchange func-
tional combined with Lee-Yang-Parr correlation (BLYP),58,59

and the Perdew-Burke-Erznehof (PBE)14 generalized gradient
approximation to exchange and correlation.

Hybrid functionals like B3LYP60 or PBE1PBE19,61 are not
benchmarked in this paper because they involve a portion of
HF exchange. Although much progress has recently been
achieved in linearizing the computational scaling of HF ex-
change,57,62,63it is true that its presence makes DFT calculations
more involved, especially in molecules with small HOMO-
LUMO gaps. Besides, the most recent developments in XC
functionals17,16,64,20seem to indicate that alternative formulations
based on the kinetic energy densityτ are every bit as accurate
as methods like B3LYP, if not more accurate for certain
problems. For these reasons, we have decided not to include a
discussion of the scaling of hybrid functionals in this work and
limit its scope to “pure” DFT functionals.

All calculations were carried out using a development version
of the Gaussiansuite of programs.65 Two types of basis sets
were used: 3-21G and 6-31G**. The former is of double-zeta
quality and the latter contains polarization functions both on H
(p orbitals) and first-row atoms (d orbitals). The largest
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calculations carried out in this work include up to around 15 000
basis functions.

All CPU times reported in this paper were obtained on a
single processor of an SGI Origin-2000 machine with the 195
MHz R10000 MIPS processor with 4 Mb Level 2 cache. The
largest calculations in this work required less than 10 gigabytes
of disk space and a maximum of 180 megawords of memory.
It is worth mentioning that in our programs, memory and disk
space requirements scale linearly with molecular size. Most of
the calculations reported herein can be carried out with just a
few gigabytes of disk space and less than 60 megawords of
memory. These are modest hardware requirements, easily
accessible nowadays in individual workstations or even personal
computers.

Table 1 presents converged energies at the LSDA/3-21G level
of theory for the two-dimensional water clusters. The FMM
parameters used in these calculations arelmax) 12, toler ) 6,
andboxlen) 2 Bohrs. The CGDMS neglect threshold isthresh
) 10-7. The final quadrature grid is a pruned 50× 194. All
calculations reported in this paper were carried out using
Gaussianstandard neglect thresholds for NF integrals and
screening of negligible charge distributions which are default
for energy point calculations.

As discussed above, when using progressive convergence,
the values of parameters and thresholds are adjusted dynamically
and the values quoted above arefinal values, except forboxlen
which is kept fixed throughout the entire calculations. The SCF
convergence criteria are set to RMSDP) 10-7 and MAXDP
) 10-5 (the maximum absolute value change for individual
density matrix elements between two successive SCF cycles).

In Table 1, we quote the differences in energy between the
O(N) calculations and the diagonalization results. With the
parameters and thresholds used for Table 1, we roughly obtain
five decimals of accuracy in the total energy as compared to
diagonalization. This energy examination is made for clusters
up to 6 × 6; the steep computational cost and memory
requirements of diagonalization makes further comparison
impractical. CPU times for CGDMS and diagonalization are
also presented in Table 1. The CGDMS figures areaVerage
values over all SCF cycles. As explained above, the computa-
tional cost of an SCF cycle varies significantly when using PC;
the early SCF cycles are inexpensive and CPU time goes up as
one reaches SCF convergence. The computational cost increase
with SCF cycles is much more pronounced for CGDMS than
FMM or LinXC. For the results in Table 1, the ratios between
the last and first SCF cycles for the largest benchmark case (12
× 12) are 2, 3, and 10, for the Coulomb, quadrature, and
CGDMS steps, respectively.

The speed-ups obtained for the Coulomb step using FMM
and for the quadrature using LinXC, compared to state-of-the-

art traditional algorithms, are well documented in the literature
and do not need to be repeated here.32,38,39,47,48On the other
hand, our previous CGDMS timings for DFT calculations
reported in the literature54 correspond to a preliminary version
of our code which was far from being optimized and did not
include progressive convergence. Thus, to demonstrate the
capabilities of our current algorithms and programs, we also
present in Table 1 a comparison between CGDMS and diago-
nalization CPU times for the set of 2D water benchmark clusters
with LSDA/3-21G.

The diagonalization CPU times per SCF cycle quoted in Table
1 are from actual calculations up to 3744 basis functions (6×
6) and are then extrapolated usingO(N3) scaling. It is neverthe-
less important to note that for the largest system in Table 1, the
12 × 12 water cluster, PC CGDMS is about 250 times faster
than the diagonalization estimate; the average CPU time for
CGDMS is less than 1 hour, whereas diagonalization would
have taken roughly 1 week of CPU time per SCF cycle.
Furthermore, diagonalization of the roughly 15 000× 15 000
Hamiltonian matrix for the 12× 12 case in Table 1 roughly
requires 450 megawords of memory (assuming that two full
matrices are needed), whereas using sparse matrix techniques
storage is much less demanding (just a few megawords for each
sparse matrix) given that only 1% of Hamiltonian matrix
elements are actually larger than the 10-7 neglect threshold in
absolute value. In addition to the speed-ups furnished by FMM
and LinXC, the substantial improvement provided by PC
CGDMS over diagonalization makes an impractical calculation
become fairly routine.

CPU times for all steps in the DFT calculation obtained with
3-21G and 6-31G** basis sets at the LSDA level of theory in
2D and 3D water clusters are presented in Figures 1-4. All of
these benchmarks were obtained with thresholds and parameters
identical to those quoted above for the results in Table 1. Results
in Figures 1-4 were carried out using PC as well; thus, the
quoted CPU times are averages over the entire SCF procedure.
The calculations in Figure 1 were obtained with SCF conver-
gence criteria identical to those of Table 1, whereas in Figures
2-4, the SCF convergence criteria were set to RMSDP)
10-6 and MAXDP ) 10-4, with the expectation of four deci-
mals accuracy in the total energy (i.e., errors less than 0.1
kcal/mol) which is sufficient for most practical total energy
calculations.

Several comments regarding the results in Figures 1-4 are
pertinent. A quick glance at these figures indicates that in most
cases we do not obtain perfectly straight lines when plotting
CPU time per SCF cycle as a function of molecular size. There
are several reasons for this. First, we do not claim perfect linear
scaling for all of the steps in the calculation. Most importantly,
the plotted times are averaged over the number of SCF cycles

TABLE 1: Energies (Hartrees) and CPU Times (min) per SCF Cycle Obtained by Conjugate Gradient Density Matrix Search
(CGDMS) and Diagonalization in a Series of Two-Dimensional Water Cluster Calculations at the LSDA/3-21G Level of Theory

CPU times (min) per cycle

cluster molecule Nbfa energy ∆Eb CGDMS diagonalizationc

3 × 3 (H2O)72 936 -5445.35917 5× 10-5 2 2
4 × 4 (H2O)128 1644 -9680.71549 7× 10-5 3 11
5 × 5 (H2O)200 2600 -15126.19784 5× 10-5 6 53
6 × 6 (H2O)288 3744 -21781.80277 2× 10-5 8 162
7 × 7 (H2O)392 5096 -29647.53523 10 409
8 × 8 (H2O)512 6656 -38723.39133 17 910
9 × 9 (H2O)648 8424 -49009.37589 22 1845

10× 10 (H2O)800 10400 -60505.48460 29 3472
12× 12 (H2O)1152 14976 -87128.08452 40 10368

a Number of contracted Gaussian basis functions.b CGDMS energy error (compared to diagonalization) obtained withthresh) 10-7 and SCF
convergence criteria set to RMSDP) 10-7 and MAXDP ) 10-5. c Extrapolated values for clusters larger than 6× 6.
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which may vary somewhat arbitrarily from molecule to mol-
ecule, with a slight increase of a few extra cycles for the largest
cases. Because the last SCF cycles are the most costly, an
additional SCF cycle may substantially increase the average
times, especially for CGDMS. Nevertheless, the reported curves
in Figures 1-4 are indicative of linear scaling and are substantial
improvements over the computational scalings of the traditional
methods and algorithms.

The Coulomb times quoted in Figures 1-4 involve both
FMM and NF integral evaluation plus the contraction step with
the density matrix. Roughly speaking, these two steps contribute
each about 50% of the CPU time. In other words, with the choice
of FMM parameters described above and for the particular
systems under consideration, our Coulomb CPU times are well
balanced between FF and NF. Further improvements to these
CPU times could be expected from advances in the NF
contraction36 which we have not implemented yet.

We next discuss the relative weights of the Coulomb, LinXC
quadrature, and CGDMS steps among the carried out bench-
marks. For the 2D case with a 3-21G basis (Table 1 and Figure
1), the CGDMS step is the most costly. This is almost always
the case although in the other figures the computational cost of

the Coulomb step approaches that of CGDMS and actually
surpasses it in a few instances. The quadrature step is in all
cases the least computationally expensive.

Basis set affects computational cost significantly. For a given
molecule, if we change the basis from 3-21G to 6-31G**, the
number of basis functions increases substantially, and so does
the CPU time. However, for a given number of basis functions,
a 6-31G** calculation on a given system is more expensive
than a 3-21G calculation with identical number of basis functions
(and consequently on a larger similar molecule) because
polarized basis sets normally yield much less sparse matrices
than unpolarized basis sets. Note that a straight comparison of
the results between Figures 1 and 2 is misleading because they
were carried out using different SCF convergence criteria. On
the other hand, the point above is well illustrated by the results
in Figures 3 and 4 for the 3D water clusters: for a given number
of basis functions, the 6-31G** results are more computationally
demanding than the 3-21G results.

We have also carried out BLYP and PBE calculations on all
clusters studied in this work. The results obtained are very much
the same for all molecules and basis sets studied: the Coulomb
and CGDMS CPU times are fairly insensitive to the particular

Figure 1. Average CPU times per SCF cycle as a function of molecular
size for two-dimensional water clusters at the LSDA/3-21G DFT level
of theory.

Figure 2. Average CPU times per SCF cycle as a function of molecular
size for three-dimensional water clusters at the LSDA/3-21G DFT level
of theory.

Figure 3. Average CPU times per SCF cycle as a function of molecular
size for two-dimensional water clusters at the LSDA/6-31G** DFT
level of theory.

Figure 4. Average CPU times per SCF cycle as a function of molecular
size for three-dimensional water clusters at the LSDA/6-31G** DFT
level of theory.
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functional used, whereas the LinXC quadrature time increases
by roughly a factor of 2 in all cases (2D and 3D with or without
polarization basis functions). When this factor 2× for the LinXC
quadrature step is incorporated into Figures 1-4, we obtain plots
for 3-21G (2D and 3D clusters) where LinXC becomes the most
expensive computational step. The effect is less pronounced for
polarized basis sets (Figures 2 and 4) where an additional factor
2× on LinXC still yields plots where Coulomb and CGDMS
are more computationally expensive.

Concluding Remarks

The objectives of this feature article are to discuss some of
the recent advances in linear scaling DFT methods, present
benchmark calculations on model systems, and attempt to give
the reader a feeling for where computational quantum chemistry
is currently heading.

It is fair to ask, however, whether the benchmark calculations
presented in this paper are representative of other molecular
systems. This a difficult question because quantum chemists
are normally interested in a wide variety of molecules which
may or may not be represented by the benchmark water clusters.
The most significant elements to be taken into account for these
potential comparisons are dimensionality, HOMO-LUMO gap,
desired accuracy, and basis set. The more compact a molecular
system is, the less sparse all matrices are, and the more
demanding theO(N) DFT calculation will turn out to be. With
the current set of methods and algorithms, linear scaling for
self-similar systems is not a problem. The prefactor (i.e., the
slope of the straight line relating CPU time to molecular size)
is strongly dependent on the particular characteristics of the
system under consideration, and most importantly, sparsity,
which in turn depends on basis set, HOMO-LUMO gap, and
selected thresholds for a target accuracy.

In order to give the reader a useful comparison, we have
carried out an LSDA/3-21G energy calculation on an RNA
fragment that contains 1026 atoms and 6767 basis functions.
The system is depicted in Figure 5 and the coordinates were
obtained from the PDB database. Using PC, thresholds and
parameters identical to those of Table 1 and Figure 1, and SCF
convergence criteria set to RMSDP) 10-7 and MAXDP )
10-5, the average CPU times per SCF step are 54, 17, and 172
CPU minutes for the Coulomb, LinXC, and CGDMS steps,
respectively. The energy calculation converges in 27 SCF cycles
which is more than usual but may simply reflect some intrinsic
SCF convergence difficulty of the chosen RNA fragment. If
the SCF convergence criteria are set to the looser values RMSDP
) 10-6 and MAXDP) 10-4, the average CPU times per SCF
step are reduced to 48, 14, and 109 CPU minutes for the
Coulomb, LinXC, and CGDMS steps, respectively. The calcula-
tion converges in 23 SCF cycles thus yielding shorter average
CPU times, as discussed above.

Comparing these results with those in Figures 1 and 2 for
similar number of basis functions, one concludes that all three
DFT steps for the RNA piece are computationally more
expensive than those for the water clusters, especially CGDMS
which is about 5× more costly than the 3D cluster case. These
results simply indicate that typical biomolecules may have
density matrices and Hamiltonians which are denser than 3D
water clusters, but they are still amenable to efficient treatment
by the methods and algorithms discussed in this work. All of
the algorithms discussed in this paper are amenable to efficient
implementation in parallel machines, which will significantly
reduce elapsed CPU times. The combination of ever decreasing
computer prices with faster processor performance can only help

make DFT calculations on very large molecules more efficient
and widely available.

We should also point out that analytic energy gradients with
respect to nuclear displacements, which are used in geometry
optimizations, can be straightforwardly computed for indepen-
dent particle methods inO(N) operations. This result follows
from the analytic energy gradient expression which is a simple
function of the density matrix. We have already accomplished
this goal in practical calculations.66 Linear scaling of compu-
tational time with molecular size for second derivatives with
respect to nuclear positions (i.e., frequencies) or linear response
methods like those used in computing excitation energies is also
feasible.66,67

Finally, we would like to speculate on whetherO(N) DFT
methods are the end of the road in quantum chemistry calcu-
lations. Even if the prefactor of linear scaling DFT methods
can be significantly reduced from its current stand and computer
hardware becomes faster and cheaper, the answer to the question
above very much depends on our ability to develop a next
generation of functionals whose predictions, when compared
to experiment, will turn out to be much more accurate than those
currently feasible. We would like the next generation of
functionals to correct most of the deficiencies that current
functionals suffer (e.g., activation barriers, dispersion forces,
and charge-transfer complexes) and, for example, to yield
atomization energies an order of magnitude more accurate than

Figure 5. 1026 atom RNA fragment calculated at the LSDA/3-21G
DFT level of theory.
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it is now possible. It remains to be seen whether this goal is
achievable. Many research groups (including ourselves) are
actively seeking new functionals on some promising grounds.

It will be hard for “mainstream” wave function methods like
coupled-cluster theory to catch up with the computational speed
of O(N) Gaussian DFT for large systems. On the other hand, it
is true that large basis set coupled cluster calculations almost
always “get the right answer for the right reason”.2 Current
functionals in DFT yield significantly more accurate results than
Hartree-Fock theory, but they are still short of providing final
results. This is evident in small molecular systems where the
accuracy of wave function methods can provide definitive
answers and is of great aid in sorting out experimental questions.
One may thus forecast that if DFT fails to deliver a next
generation of significantly more accurate functionals, it would
then be reasonable to assume that much work will be devoted
to developing fast (i.e., small prefactor)O(N) wave function
methods, an area where some research groups are already
active.6-8
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